

ZAO "PromServis" 112, 50 let Oktyabrya, Dimitrovgrad, Ulyanovsk region, 433502, Russia Tel.: +7-84235-45002; Fax: +7-84235-45832

e-mail: promservisved@gmail.com; promservis@promservis.ru www.promservis.ru

## **Ultrasonic flowmeter PRAMER-510**

This flowmeter refers to time-and-frequency ultrasonic flowmeters. It operates using the transit-time differential method, based on difference of propagation time for ultrasonic waves travelling down- and against the stream.

**Advantages:** No construction elements in flow passage of pipe, high stability of measurement, noise immunity, possibility of application at low conductivity fluids.

PRAMER-510 allows to measure consumption of liquids in both directions of the flow in pipelines with diameter up to 2000 mm.

**Application**: ultrasonic flowmeters are used at pressure pipelines for measurement of liquids flow (water, industrial oil, waste water, stratal water, etc.) in various fields of industry and municipal engineering.

PRAMER-510 consists of 1 or 2 sections of pipe (measuring sections), electronic transducer (signal converter) and connection cable 12-150 meters length (up to 500 m upon request).



At the moment "PromServis" manufactures ultrasonic flowmeters with the following passage diameters (**Dp**) of measuring sections:

Dp, mm: 40; 50; 65; 80; 100; 125; 150; 200; 250; 300 - in serial production and

Dp, mm: from 300 to 2000 – upon request.

For pipelines with diameter 300 mm and more mounting with use of cut-in technology is possible.

Depending of quantity of measuring sections and constructive features flowmeters are produced in several versions, listed in Table 1:

| Version of | Nominal passage | Qty of    | Qty of acoustic       | Position of       |  |
|------------|-----------------|-----------|-----------------------|-------------------|--|
| flowmeter  | diameter, mm    | measuring | channels at measuring | transducers at    |  |
|            |                 | sections  | section               | measuring section |  |
|            |                 |           |                       |                   |  |
| 01         | 40 - 2000       | 1         | 1                     | diametrical       |  |
| 02         | 40 - 2000       | 2         | 1                     | diametrical       |  |
| 03         | 100 - 2000      | 1         | 2                     | chordal           |  |

# **Characteristics of measured liquids:**

Temperature range: from -20 (without freezing) to +150 °C;

Excess pressure: not more than 1.6 or 2.5 MPa; Kinematic viscosity: not more than 5\* 10<sup>-6</sup>;

Volume content of gas and solid inclusions: not more than 2%.

## **Operating Conditions:**

Ambient temperature:

- for measuring sections: from -30 to +55 °C;

- for signal converter: from +10 to +55°C.

Relative humidity: up to 95% (at temperature +30°C and lower, without moisture condensation).

Atmospheric pressure: from 84,0 kPa to 106,7 kPa.



ZAO "PromServis" 112, 50 let Oktyabrya, Dimitrovgrad, Ulyanovsk region, 433502, Russia

Tel.: +7-84235-43002; Fax: +7-84235-45832 e-mail: <a href="mailto:promservisved@gmail.com">promservisved@gmail.com</a>;

promservis@promservis.ru www.promservis.ru

Maximal (Qmax), transit (Qp) and minimal (Qmin) values of measured flow depending on passage diameter of measuring section and a method of calibration are given in Table 2:

|                    | Dp of pipe section, mm |     |      |     |     |     |     |     |  |
|--------------------|------------------------|-----|------|-----|-----|-----|-----|-----|--|
| Flow, $m^3/h^{1)}$ | 40                     | 50  | 65   | 80  | 100 | 125 | 150 | 200 |  |
| Qmax               | 50                     | 70  | 125  | 200 | 300 | 450 | 630 | 800 |  |
| Qmin               | 0,5                    | 0,7 | 1,25 | 2,0 | 3,0 | 4,5 | 6,5 | 12  |  |

### Notes:

1 Velocity of liquid's flow at Qmax does not exceed 11 m/sec.

2 Qmax, Qp and Qmin for measuring section with DN 100 mm and more at indirect method of calibration can be calculated with help of the formulas:

Qmax = 0.03 Dp2, (1)

 $Qp = Qmax/50, \qquad (2)$ 

Qmin = Qmax/100 (3)

Dp – passage diameter of measuring section.

1) Values of flow at hydraulic method of calibration

Relative accuracy range at flow-rate and volume conversion into electric signal output:

- for flowmeters version 01, 02: at hydraulic method of calibration:
  - from  $Q_{min}$  to  $Q_{max} = \pm 1,5 \%$ ;

at indirect method of calibration:

- from  $Q_{min}$  to  $Q_p$   $\pm 2.0 \%$ ;
- from  $Q_p$  to  $Q_{max}$  ± 1,5 %;

- for flowmeters version 03: at hydraulic method of calibration:
  - from  $Q_{min}$  to  $Q_{max} = \pm 1,0 \%$ ;

at indirect method of calibration:

- from  $Q_{min}$  to  $Q_p$  ± 1,5 %;
- from  $Q_p$  to  $Q_{max}$   $\pm 1.0 \%$ .

### **Technical characteristics:**

Protection degree: IP55 for electronic transducer; IP67 for measuring sections.

Power supply: 187-242 V,  $(50\pm 1) \text{ Hz}$ . Power consumption: not more than 10 W.

Frame size of electronic transducer (max): 222x170x56 mm.

Average life time: not less than 12 years.

Recalibration interval - 4 years. Warranty period - 12 months.